Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model

نویسندگان

  • Eileen Chen
  • D. Scott Mackay
چکیده

Accurate predictions of sediment yield from distributed models of runoff and sediment yield depends in part of how well matched the model structure is to input data spatial representation. This study investigated how model structure and input data representation affect sediment predictions made using the Soil and Water Assessment Tool (SWAT). The study focused on the integration of two specific components of SWAT: the Modified Universal Soil Loss Equation (MUSLE) and the hydrologic response unit (HRU). MUSLE, a watershed erosion model, was applied to different levels of watershed partitioning and alternative HRU schemes for a watershed and its two subwatersheds over a 4-year period of measured stream flow and sediment yield. The results show that across different levels of watershed partitioning, HRUs do not conserve sediment. Instead, HRUs introduce almost half of the variability in sediment generation, which has previously been attributed solely to input data aggregation. This occurs for two reasons. First, MUSLE defines a nonlinear relationship between sediment generation and HRU area, but the sediment load is scaled linearly from the HRU level to the subwatershed level. Second, HRUs aggregate land areas without regard for the surface connectivity assumptions, which are implicit in MUSLE. These conflicts caused by the integration of HRU and MUSLE makes it difficult to determine the effect of different land use on soil erosion. This study indicates that greater attention should be made to structuring the data inputs to match the underlying assumptions of sub-models within SWAT. q 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Spatial Distributions of Point and Nonpoint Source Pollution Loadings in the Great Lakes Watersheds

A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal distributions of material transport in the Great Lakes Watersheds of the U.S. Multiple databases of meteorology, land use, topography, hydrography, soils, agricultural statistics, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Anim...

متن کامل

Modeling Spatial Distributions of Nonpoint Source Pollution Loadings in the Great Lakes Watersheds by Using the Distributed Large Basin Runoff Model

The NOAA Great Lakes Environmental Research Laboratory, Western Michigan University, and the University of Michigan are jointly developing a physically based, spatially-distributed hydrology model to simulate spatial and temporal nonpoint source material distributions in the Saginaw Bay watersheds, which drains into Lake Huron. Multiple databases of meteorology, land use, topography, hydrograph...

متن کامل

Landscape planning for agricultural nonpoint source pollution reduction I: a geographical allocation framework.

Agricultural nonpoint source pollution remains a persistent environmental problem, despite the large amount of money that has been spent on its abatement. At local scales, agricultural best management practices (BMPs) have been shown to be effective at reducing nutrient and sediment inputs to surface waters. However, these effects have rarely been found to act in concert to produce measurable, ...

متن کامل

Modeling of Non-Point Source Pollution by Long-Term Hydrologic Impact Assessment (L-THIA) (Case Study: Zayandehrood Watershed) in 2015‎

Background & Aims of the Study: In this research, Long-Term Hydrologic Impact Assessment model is selected for simulation of runoff and NPS pollution. The aim of this study is modeling of non-point source pollution by L-THIA model in Zayandehrood watershed in 2015. Materials & Methods: In this study, analytical survey and investigation of references in the context of libr...

متن کامل

Including Source-Specific Phosphorus Mobility in a Nonpoint Source Pollution Model for Agricultural Watersheds

Most widely used nonpoint source models associate pollutant loads almost exclusively with land use via pollutant export coefficients and some kind of runoff coefficient. Not surprisingly, the range of management options suggested by such models’ simulations are largely linked to changes in land use. This problem is addressed by developing models of dissolved phosphorus DP mobility for specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004